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TECHNICAL MEMORANDUM X-64926

A STEERING LAW FOR THREE DOUBLE-G IMBAL COI\iTROL
MOMENT GYRO SYSTEMS

I. INTRODUCTION

Control moment gyro (CMG) systems are effective actuators for attitude
control of a large variety of spacecraft. In Skylab, a doublc-gimbal CMG system
was used successfully. Also, in some future projects, like the Large Space
Telescope ( LST) and the High Energy Astronomy Observatory (KEAO), CMG
systems are proposed as the primary system for attitude control.

In this report, a new steering law, whose principle is very simple, for
three double-gimbal CMG systems is proposed. It is applicable to almost any
configuration, and the CMG -out operation requires no special consideration.
Although several steering laws for double-gimbal CMG systems have been
developed in the past including one that was used in the Skylab [1-3], the basic
principies of these sicering laws are more complicated than that of the proposed
steering law.

The main idea is utilization of a formula for the general solution to a set
of linear algebraic equations whose number is less than the unknown variables.
The general solution is given in tern.s of the pseudoinverse of the coefficient
matrix for the set of linear algebraic equations and it contains an arbitrary
vector. This arbitrary vector is used to obtain a desirable momentum distri-
bution among the CMGs,

In Section II, a general description of the steering law is given. In
Section III, two examples are worked out. The first example is a three double-
gimbal CMG system with an orthogonail configuration and the second one is a
three double-gimbal CMG system with a parallel configuration. In both
examples, digital simulation results are given to illustrate the effectiveness of
the steering law.
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I1. DESCRIPTION OF THE STEERING LAW

The output torque of any CMG system can be described by

where g is the n-dimensioml gimbal angle vector (in the case of three double-
gimbal CMGs, n=6), t is t} _ three-dimenscional output torque vector, h is
the three-dimensional total angular momentum vector, and C(8) isa coeffi-
cient matrix, each entry of which is a function of §. h and 6 denote the

time derivatives of h and 6, respectively. It is “assumed *';at there are no
gimbal stops on the CMGs.

Given the present state g Of the system, it is required that one obtain
a gimbal rate command r which satisfies

i

t
=c

c(d)r (1)

where c is the command torque. The general solution to the above equation

is given by [4] [C(8) is also denoted by C hereafter]

r= c#;c + lI-C#C]_lg (2)

#
where C is the pseudoinverse of C, I is the nx n identity matrix and k
is an arbitrary constant vector. The second term can be used for momentum
distribution.

It is aysumed that a proper scalar criterion function which measures the
desirability of the momentum distribution of the present state g is given,

w = £(8) , (3)
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and it is also assumed that the larger the value of w, the better the momenti»m
distribution. The time derivative of w is given by

where the superscript T denotes transpose and

T
T GO SRR

_ 91(8) _
£, 1 , £=1,2 ...,0 . (4)

Under the as.»mption that the gimbal rate command (2) is perfectly realized,
that is, §= r, the time derivative of w is given as follows:

w=¢Tch t, * g_Tll.c#C]5 . (5)

In order to increase the value of w, it will be best to select .‘E as

k= gk (6)

where k 1 is a positive constant. The reason for the selection of equation (6)

follows: From equations (2), (5) and (6), one obtains

r = c#t_c + f1c*el £k, (7
w=gc" +Tuctorgn, (8)

and the second term in the right-hand side of equation (8) becomes nonnegative

#
(because [I-C"C] is ideripotent), contributing for an increase of the value w,

LR R e . v e e cann sy —
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Equation (7) is the basic equation of the steering law. It involves the
selection of only one scalar constant k1 .

In summary, the main procedure of the steering law is given as follows:
#
1. Calculate C .

2. Calculate £.

3. Calculate r by equation (7).

Remark 1: The meaning of the constant k will be considered. If

t.=Q (zero vector), then

#
r =71 = [I-C' Cltk (9)
.70
., I
LA ) = ¢ cclik . (10)
t.=0

The maximum of w0 under the constraint Ilr l =1 (Il ldenotes norm) is
given by

max

“r | = = {g -ctcl &} . (11)

w =
Omax

Hence from equations (9) and (11)

Ir |I = k wOma)r . (12)

Therefore, if t‘c = 0, the magnitude of r becomes proportional to w and

Omax

k1 is the proportional coefficient. In practical applications, in order to

a
H
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prevent lir 0" from becoming too large, a limitation for k 1 should be given.

One candidate for this is Il_l_‘_oll = k2rg , i.e.,

< T ¥ "1/2 i
k= {¢[1-cclg) kot (13)

where r, (deg/sec) is the hardware limit for the gimbal rate and k2 is a

constant (0 =< k2 = 1).
T
Remark 2: If det(CC ") # 0, then

ct - CT(CCT)'1 . (14)

#
On the other hand if det(CCT) = 0, the calculation of C is rather compli-
#
cated. A simple way to overcome this difficulty will be to approximate C by

CZ where Cp = C( 8+ A8 ) and Ad is a small perturbation of § such that

det(CpC‘;) # 0. For double-gimbal CMG systems dc‘:(CCT) = 0 happens

only when all the momentum vectors of the CMGs are on the same line (parallel
or antiparallel). Such a situation can hardly happen except when n= 4 (i.e.,
two double-gimbal CMGs). Also one of the main purposes of the momentum
distribution is to avoid such a situation. Hence the small error caused by the

# #
approximation of C by Cp will be negligible in practical applications.

Remark 3: In the following section, the root of the determinant of CCT
will be taken as the criterion function f(5):

f(é) = ndetG

where
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The reason for this selection of f( ] ) will be given later. For this criterion
furction, EI is given by

3
g, = %%‘L) 2‘ lg;jdij , 1=1,2, ...,1 . (15)
[} 2~l’6ew i,j=1
where
‘g'ij = agij/abl

i = gikgkj-gijgkk ’ (i:jyk) = (112o3)» (2’391) or (391:2) .
(16b)

Using the fact that g5~ 8 and d.= d. . equation (15) can be rewritten as
follows: ) R

- o ' ! y

lg d_.1/NcetG . (17)

111, EXAMPLES

In this section, two examples of three double-gimbal CMG systems will
be given to show the effectiveness of the steering law.

Example 1: For a three double-gimbal CMG system in an orthogonal
configuration, several notations will be introduced. For the ith CMG (i =

1,2,3), an orthogonal coordinate system (Xi Yl Z i) is used, where Zi axis is

T —————. bk AR 10 SO IYY £ 3% o b
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the outer gimbal pivot axis and xi and Yi axes are fixed with respect to the

spacecraft. a_  and Bi are the outer and inner gimbal angles, respectively,

(in degrees) of the ith CMG, as shown in Figure 1. The angular momentum
. 3
vector of the ith CMG is denoted by Ei and the total momentum by h(= 2 Ei)‘
i=1
hi denotes the magnitude of Ei‘ Then, in XiYiZ i coordinate system,
"h, ca, B, |
i ii
by = by
%%
A Z
/- MOMENTUM VECTOR
ORIGINAL PAGE Ig
POOR QUALITY
! X
OUTER GIMBAL PIVOT
. Figure 1. Outer and inner gimbal angles oi a double-gimbal CMG.
z
7 a.

-



and

-hisaicﬁi -hicaiaﬂﬂ &11
By= |boa;o8 -bsx ) |B
R 0 hieﬁi o
where ¢8 = cosb , sb = sinb .

Now the three double-gimbal CMG system in an orthogonal configuration

shown in Figure 2 is considered. Let

6 =8, i=1,2,3

then, in XYZ-coordinate system given in Figure 2,

.hl sal cﬁ1 -hlcc!1 SBI 0
C= |hoaycd  -hose s  -hosa, d
L 0 h, c8, h, oo, Oﬁz

h_ca_cf -h3m3333

0 h cB

-hysagcB, by ca, B,

o min e ————

h

-h2 co:2 832

-h

o8

sa, 8,

FEPRRREIETORERPE U
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Figure 2. A three-CMG system in an orthogonal configuration.

Let G= CCT and f(8) = NdetG, then 's are given by

28y

' = o " = 2
21181 = 2118y = 20 %1 P

= t = _h?
h’ib b 8 hisaa

]
21-184 ai 81 * 21-181k i %1

= hea, a R 0

' ' =
2118k = "1 %1 %1 21-18kKk

(18a)
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vt = _ ol =
2181 21833 2M b, 8
' = t = _h
2183 a8 0 8 b ca, bg,
t = _ 1 = _ 9ht
afik = “Hi by o g T - 2Miag (18b)

where (ivj’k) = (13203)9 (203’1) or (3o1’2)» and

By T B0y, 8, = BB
= _ g N
b, czo:i a, bBi cﬁi sBi (19)

Therefore, £ l's are given by equations (16), (19), and

10

§o5a = Bl (4 ’djj) = byy 9y By
- [sozi d, +oa, djk] am}/'\fm (20a)
bgy = Mllby,(dy i) -d +aa  d.]ag,
- [caidik-saidjk] bm}/m . (20b)

Hence the steering law can be described as follows:
1. For agiven §, calculate C(0) and detG.

2, If detG = 0, then let

L AL G A gl i g, b
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anc go to step 1, If detG # 0, go to step 3. AS is a small positive number
. (typically A8 = 0.2).

# -
3. Calculate C =CTG 1.

4. Calculate { from equations (16), (19), and (20).

5. Calculate r ¢ C#g * If the absolute value of any component of r ¢

is larger than rg » limit each component of r ¢ proportionally, such that the

maximum absolute value of components of r ¢ is equal to rg .

#
6. Calculate r= £t+ [1-Cc C] E_kl

where

_ T tor o %
k, = min (k, kzrg{E_ [1c'clg ™2}

and k2 and k3 are positive constants. If the absolute value of any component

of r islarger than rg » k. is decreased until the absolute value of every

1
component of r becomes smaller than rg.

This completes one cycle: After one unit time interval A, the state of
the system § is measured and the next cycle begins. In normal operation, the
qualifying remarks mentioned in steps 5 and 6 will very seldom occur.

There are eight zero momentum stationary states. One is given by
{ai= 45, 8,=0, i= 1,2,3} as shown in Figure 3, and the state which is

symmetric to this state with respect to the origin is also a zero momentum

stationary state, Others are symmetric to these two states with respect to the

XY-plane, the YZ -plane, and the ZX-plane. In Figure 3, the outcr circle shows

the contour of the sphere with a unit radius and three inner circles denote the

cross sections of the sphere by the XY-, YZ- and ZX-plane. The three arrows

terminating on the sphere surface denote the three momentum vectors h i

i=1,2,3. '

11
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Figure 3. Zero momentum stationary state of the three-CMG
system in an orthogonal configuration,

A digital simulation has been completed using a mini-computer. Values
of constants were selected as follows:

h, =1,i=1,2,3, (normalized)

i
k. = 02 , k, = 0.1
2 3 ORIGIN
P
" POOR qugg 13
r,=2,8=8, 488 =02 .
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Figure 4 shows a response of the system to a torque command in the X axis
direction with magnitude 0.01. The initial state is the zero momentum state
shown in Figure 3. Dots on the unit sphere show the end points of the momen-
tum vectors Ei , i=1,2,3, and arrows along the side of the dots show the

: i time trajectory (broken lines indicate that the vectors are located on the back

half of the sphere). The output torque followed the torque command
satisfactorily.

Ly
.

L‘ x
Figure 4. Response to an X directional torque command with
magnitude 0. 01 (orthogonal configuration).

If the direction of the command is exactly the opposite of a vector h i

all through the period of steering, there is a possibility for the system to get
int~. a singular state., For example, if the initial state is {ozi = 45, Bl =0,

13
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i=1,2,3} and the torque command is {t_= 0,005, t =0, = -0.005} (see
Figure 5), then h 3 does not move at all and the state falls into a singularity.

In practice, however, such a situation can hardly happen because of the exis-
tence of disturbances on the spacecraft and noise in the sensors. Figure 6
shows a response to a torque command in the neighborhood of the most untavor-
able direction. The initial state is {a, = a,= 45, @, = 44, B, = 0, i= 1,2,3}

auu the torque command is {t = 0,005, l:y =0, tz = -0.005}. It is seen from

the figure that by the compensation of h and 22 , .11 3 is turned to a desirable

direction,

DIRECTION OF UNFAVORABLE
TORQUE COMMAND

Figure 5. Possible direction of torque command for the system to
get into a singular state (orthogonal configuration).

ORI(,jN
Al
OF Poog QP A(zgé:g

14



Figure 6. Momentum distribution process for an unfavorable torque
command (orthogonal configuration).

Moreover, even if the system falls into a singular state, the steering
law has an ability to recover from it, as shown in Figure 7 where the initial
state is {al =8,= a,= B3 =0, 32 =y s -90} and the torque command is kept

at zero, For a CMG-out operation, the only change that should be made is to
set hi = 0 when the ith CMG has failed. The control performance of this

system was very satisfactory in every case simulated,

Example 2: A three double-gimbal CMG system in a parallel configura-
tion. The same notation used in Example 1 is valid in this example. The three-
CMG system in a parallel configuration! as shown in Figure 8 is considered.

For this configuration, the matrix C(8) is given by

1. Kennel, H. F.: Control Law for Parallel Mounted Double-Gimbal Control
Moment Gyros. Second Annual Research and Technilogy Review, Marshall
Space Flight Center, Oct. 1974,

15
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a. Trajectory of the end points of momentum vectors.
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<V

7 = 352

X

b. Positions of momentum vectors in XY-plane at time 7.

Figure 7. Recovery from a singular state (orthogonal configuration).

<V



Y3

Yy

Figure 8, A three-CMG system in a parallel configuration.

-h1 scu1 cﬁl
hy ca, B

0

.h3 sa3 c.63

h:3 ca‘3 cB3

-h1 ca, SBI -h2 s, ch -h2 ca, sﬁz
..hlscv1 331 l'xzcozzcﬁ2 -hzsazsﬁz
h1 cﬁl 0 h2 CBZ
-hy cay 56, ]
-hy sag 8y

By by ]
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Let f(g) = A detG , then by a derivation similar to that in Example 1, El is
is given by equations (16), (19), and

Eo11 = Millay, (4, -9,) - Pai Y12} V5
- [said13+caid23] aBi}/'\/&t—G— (21a)
8y = Millbg, (d)) -dp) ~dy v aa, d ] %1
- [ccvi d g -sa, d23] bﬁi}/m . (21b)

The procedure of the steering law is the same as that in Example 1 with
the following exception: Use equation (21) instead of equation (20) in step 4,
and instead of step 2 the following step should be used to ensure the avoidance
of the case of detG= 0:

If detG = 0, then let

51'2 = 61 + AG' (£ -3.5) , £ = 1,2, ..., 6

and go to step 1, If detG # 0 go to step 3. A0' is a small positive number,

Zero momentum stationary state is given by {Iozl - (vzl = Ioz2 - 03|
= |a‘; - all = 120, ﬁi= 0, i=1,2,3}., One such state is shown in Figure 9;

any other state can be obtained by a rotation of this state around the Z axis,

A digital simulation was performed with

_ _ ORI(JNA
ky = 0.2, ky = 0.1 o I—‘()(,;\‘L( G Is

o
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Figure 9. Zero momentum stat.onary state of the three-CMG
system in a parallel configuration.

Figure 10 shows a typical behavior of the system; a torque command {tx = ty =
1:z = 0,005} is applied to the system with a zero momentum stationary state

{a1= 0, a, = 120, &,

to a torque command in the vicinity of the most unfavorable direction. The

initial state is selected as {a_ = 60, a, =179, a, = -60, ﬁi =0, i=1,2,3},

and the X -directional torque command with magnitude 0. 005 is applied. The
figure shows a very good momentum distribution procedure.

= 2120, Bi= 0, i= 1,2,3}. ¥igure 11 shows a response

If the initial state is {a] = 60, a, = 180, @,

and the torque command is kept exactly in X axis direction, the system will {*11

= &0, Bi= 0,i=1,2,3}
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Figure 10. Response to torque command tx = ty = 1:z = 0,005
(parallel configuration).

into the singular state shown in Figure 12(b), 7 = 0. As mentioned in Example
1, nowever, the possibility of occurrence of this situation is almost zero.
Moreover, even if such a situation does occur, the steering law has the ability
to recover from it, as shown in Figure 12 where the initial state is {a_= a 9= 0,

03 = 180, Bi =0, i=1,2,3} and the torque command is kept at zero.

IV. DISCUSSION

Although the root of the determinant of CCT (=NdetG) has been used as
the criterion funciion, any reasonable function of § can be a candidate for .

it. The reason for the selection of NdetG in thls_report is as follows:

20
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Figure 11. Response to an X directional torque command
(parallel configuration).
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Figure 12, Recovery from a singular state (parallel configuration).
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1. detG is a scalar variable which is most directly related to the
singularity of the system.

2. By digital simulation, it was found that NdetG gives { which is
large enough to drive the system out of the vicinity of the singular states, while
detG gives very small { around the singular states.

3. So far, the author could not find any simpler criterion function which
gives as good performance as ~NdetG .

For some specific CMG configurations, there may be simpler criterion func-
tions. For example, for the parallel configur-.tion given in Example 2,

3
=) Ua, -a ) + k(B -B)?]
£ % % i~"o

is a good candidate for f(6), whe~ « 0’ i=1,2,3 and B o oTe reference

angles that should be specified by tixe designer as functions of g . Whcther or
not this is really good for f(8) could be determined only after investigating
various methods of giving 0 and B 0 and performing a digital simulation

study. To find such a simpler criterion function is a topic for future
investigation.

The author believes that the software ~f the proposed steering law is
much simpler than any other steering laws developed so far. Rigorous com-
parison study shouid be performed, however, to give any objective statement
about computer software. This is another direction of the future study.

Since any r which satisfies equation (1) can be expressed in the form
of equation (2) by selectlng an appropriate k, any steering law which produces
the same torque output as the torque command could be expressed in the form
of equation (2). Also, if k is iaken to be zero, equation (2) becomes a
steering law which has usually been called the pseudoinverse steering law.
Therefore, the steering law develocped here may be called the "universal
pseudoinverse steering law."

Systems utilizing only three double-gimbal CMGs have been developed
in some detail. However, it is clear from the general discription given in
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Section 2 that the steering law has the possibility of remaining effective for any
number of double-gimbal and/or single-gimbal CMGs with any configuration
(which result in n = 3), possibly with a proper selection of the criterion func-
tion. Reaction wheel systems are also expressed by (1) with a constant
coefficient matrix C instead of a state-dependent matrix C(8). Therefore,
the approach taken in this report will be useful in obtaining stgering laws for
reaction wheel systems. Research in this direction should also be made in the
future.

V. CONCLUSION

A steering law, whose principle is very simple, for three double-gimbal
CMG systems is proposed. This steering law is applicable to systems with
alr-ost any configuration of CMGs and the CMG -out operation needs no special
modification.

To illustrate the effectiveness of the steering law, two examples of three
double-gimbal CMG systems in an orthogonal configuration and in a parallel
configuration were worked out in detail. Simulation results have shown that
any command torque can always be met except when the system is in a singular
state and that, whenever the system is in, or close to, a singularity, the
steering law drives the system out of the vicinity of the singularity.
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